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Abstract—Smart Manufacturing is currently the main objec-
tive when production manufacturers digitalize their plants to
face current regulations and requirements to optimize costs,
consumed resources, and sustainability. The focus is usually on
extracting data from production and making it ‘‘analyzable”.
However, the results often neglect advanced options to optimize
the production, may it in regards to the production process itself
or in regards to consumed resources of the produced goods
in specific. As the main contribution, this paper describes a
novel approach to consider process mining appending to plant
digitization and IoT analytics. As a result, the entire production
process becomes transparent and therewith analyzable, but also
the concrete consumed resources per produced good, per group,
or as a whole can be analyzed. As the application benefit, the
paper also outlines some advanced analysis capabilities to identify
production optimizations based on process mining.

Index Terms—Process Mining, Smart Manufacturing, Industry
4.0, IoT Analytics, Visual Analytics

I. INTRODUCTION

The manufacturing industry is currently facing many up-
heavals worldwide. Companies in Europe, in particular, are
facing a unique set of challenges. In addition to global
competition, companies are being challenged by issues such
as sustainability, more efficient resource usage especially in
regards to energy usage, and a shortage of skilled workers.

To counter these difficult challenges, many companies have
already started to plan and implement the digitization of their
production lines and systems. Through digitization, compa-
nies hope to gain significantly more transparency and under-
standing of where further optimization and therefore saving
potentials lies. And indeed, many reports and studies [1] [2]
show that the digitization of production creates a much more
comprehensive understanding of production, and the resources
used.

This digitization of production is often referred to as Smart
Manufacturing or Industry 4.0. As a rule, systems are used
to monitor and analyze current production based on data.
The usual main focus here is thereby on reading either the
installed sensors or additional sensors and displaying them
to the analyst [3]. These can be instantaneous consumption
data, such as electricity values, or current switch and controller
positions, as well as readings from consumption meters. This is
often followed by aggregated views that provide an overview
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of consumption over a certain period or a customer’s entire
order [4]. Today, optimizations are usually made based on
these aggregated views.

However, one challenge of these aggregated views are that
it is still a perspective on the production plant, on which
is tried to draw conclusions about the production goods and
make corresponding optimizations. Currently, there is often a
lack of approaches for making concrete statements about the
resources consumed for a specific piece goods produced. But
only with such a view that enables significantly beyond-going
optimizations, for example, to optimize power consumption
or reduce manual personnel costs, the full potential of smart
manufacturing in regards of resource optimization can be
achieved.

This paper therefore presents a novel approach for combin-
ing IoT analysis with process mining to obtain a much more
comprehensive picture of production and outline far-reaching
optimizations based on this. In contrast to IoT analysis, process
analysis tracks the processing of the workpiece across the
entire production line and allocates the efforts, consump-
tions, and errors incurred in each case. This also applies
if workpieces undergo post-treatment, for example, and are
therefore subject to extended processing. This specific piece
goods analysis makes it possible to carry out comprehensive
investigations and also to identify where there is great potential
for savings.

II. VISUAL ANALYTICS IN SMART MANUFACTURING

Typical approaches to data visualizations focus on gener-
ating graphical views of data, which are often almost static.
But even a wisely chosen visualization in regards of the given
data, user, and task [5] cannot fulfill the demands on smart
manufacturing analytics. In contrast, Visual Analytics aims
for a stronger coupling of (data-)models to the visualization,
which can be adjusted or replaced and offers therewith much
more interactivity and analysis capabilities on the original data.

A. Visual Analytics Model

Thomas and Cook [6] define visual analytics as the science
of analytical reasoning facilitated by interactive visual inter-
faces. Keim et al. [7] define visual analytics more precisely
as: Visual analytics combines automated analysis techniques
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Fig. 1. The figure shows the refined Visual Analytics process model by
Nazemi [8], which was originally created by Keim et al. [7]

with interactive visualizations for an effective understanding,
reasoning, and decision-making on the basis of very large and
complex data sets. The goals of visual analytics are summa-
rized as [7]: (1) synthesize information and derive insight from
massive, dynamic, ambiguous, and often conflicting data, (2)
detect the expected and discover the unexpected, (3) provide
timely, defensible, and understandable assessments, and (4)
communicate assessment effectively for action.

The published visual analytics model of Keim et al. [7]
sketches the processing of data visualizations and should lead
to knowledge (see Fig. 1). The main step is the transformation
of data to a (data-)model that can be transformed through
mathematical functions to extract certain data aspects and gain
new insight. The original model of Keim et al. was refined by
Nazemi [8] to be more appropriate for applying it in modern
visual applications.

B. Visual Analytics of lIoT Data

The most common but also generic form of using visual
analytics is using basic forms to analyze IoT data, such as
temperatures, pressures, speeds, or flow rates. Most of the
available systems, such as Cumulocity!, already provide basic
visualization components to analyze the data. But also cross
connections to advanced analytical systems such as Tableau or
Microsoft Power BI are common, besides more sophisticated
systems with a stronger focus on plant workers, such as
TrendMiner [3], [9]. The main idea for all of them is to enable
analysis close to the sensor data.

A less common approach for this type of visual analytics is
the creation of specific visualizations that are usually not part
of common platforms. One of these examples is LiveGantt
[10], which is a visual analysis approach used in analyzing
large-scale manufacturing schedules consisting of numerous
production tasks and resources. As the main features, it utilizes
task aggregation and resource reordering algorithms to deal
with schedule data at first and then uses a new Gantt chart
to visualize the results of these algorithms. Another kind of

"Website of the Cumulocity IoT platform: https://www.cumulocity.com (last
accessed: 12/07/2024)
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approach is the visual analysis solution allowing test engineers
to interactively steer ensembles generated in the performance
test of automobile power system published by Matkovic et al.

[11].

C. Visual Analytics of Production and Plants

Besides the generic visual analytics approaches, there are
some production or plant-oriented analytical systems available.
The intention is to offer an abstract visual view of the plant
or production and apply analysis toward the root causes
of problems or optimizations. Some recent visual analytics
approaches, as presented by Xu et al. [12], enable real-time
monitoring of entire production lines with the help of a sophis-
ticated interface. Al methods can already be used to analyze
large amounts of data today. A visual analytics system can
actively help to set the right parameters for an Al application
and evaluate the results [13]. These two publications are
representatives of two research directions within the smart
manufacturing research field. On the one hand, starting from
the machine to visualize the complete manufacturing process
[12], and on the other hand, to make the methods used more
transparent [13].

Both methods therefore rely on anomaly detection or nov-
elty detection. In the context of smart manufacturing, large vol-
umes of multivariate data are usually used with unsupervised
anomaly detection algorithms. Machine learning methods can
also be used here. A data set within machine learning always
consists of input values (initial situation) and the appropriate
description (label). With large amounts of data (usually several
terabytes), the manual annotation of each data set is very time-
consuming and labor-intensive, and therefore ultimately cost-
intensive and error-prone. This is why unsupervised techniques
are used here. Here, the label is missing, and the anomaly is
determined using mathematical operations based on the initial
situation. Xu et al. generate automatic ensembles of predefined
anomaly detection algorithms based on the different data
types and visualize their effectiveness. In this way, the best
ensembles can be selected for specific data to effectively detect
anomalies within the large amount of multivariate data. This
methodology makes the path from data to anomaly transparent.

Xu et al. [12] present with ViDX (Visual Diagnostics of
Assembly Line Performance for Smart Factories) a dashboard
that visualizes the manufacturing process. The interface is
divided into five sections: the station map, histograms, an
extended Marey graph, and a timeline with a calendar above
it. The station map visualizes the sequence and connections of
the individual stations. The histogram shows the utilization of
the station. The extended Marey graph provides an overview
of failures (gaps) or delays (converging graph with delayed
further processing) by viewing all stations simultaneously. The
timeline can be used to compare the production line scrap and
anomalies can be found more quickly. The calendar aggregates
the timeline monthly. Ke Xu et al [13] monitor the physical
layout and output of an entire factory historically, i.e. over
time. Today’s factories usually emit even more complex data
sets, which will require even more specialized visualizations



in the future. Data visualization thus forms an essential basis
within smart manufacturing and ensures that very complex
issues are presented in a meaningful way.

ITII. FOUNDATIONS TO PROCESS MINING AND SMART
MANUFACTURING

Process mining [14, p. 25-41] is an innovative discipline at
the intersection of data science and business process manage-
ment that aims to analyze and optimize real business processes
based on digital traces. These digital traces, which are recorded
in so-called event-logs, contain detailed information about the
sequence of activities, time stamps, and resources involved
in a business process. By using process mining techniques,
companies can visualize and analyze the actual flows of
their processes, identify deviations from the ideal or intended
processes, and uncover potential for improvement.

The benefits of process mining lie particularly in its ability
to bring transparency to complex processes that are often
distributed across different IT systems and difficult to capture
in traditional, manual analysis methods. For example, process
mining can be used to identify inefficiencies, bottlenecks, or
compliance violations in real time, enabling companies to react
faster to process problems and continuously optimize their
operations [15].

A. Event-based Processing

Process Mining is working on event data, which is generated
during the application of business processes. This event data,
often stored in so-called event-logs, contain usually informa-
tion about (see also Table. I) [14, p. 128-137]:

e Case ID: Each case within a performed business process
should consist about a unique ID.

o Timestamp: The timestamp represents when the specific
event was thrown or rather the activity has started.

o Activity: The activity is the title of what has been done
during a certain processing step, for instance, checking a
ticket in a support system.

Further recommended information that should be logged
are:

e Event ID: A unique event could be helpful to better
distinguish events if log entries could be complex or
multiple log entries build a single event entry.

e Resource(s): A resource may it in the form of a specific
person, terminal, or software that is required or involved
in the activity.

e Duration or Cost: The duration and/or cost represent how
much of a resource was being consumed in the activity
or the worth of the resource it represents.

But also, further supplementary dimensions could be con-
sidered, which might be useful in further analysis and opti-
mization, such as:

o Energy or Water Consumption: Often beside the activity
duration or resource costs, some other aspects could be
important to consider too, e.g. to measure sustainability
or other social aspects.
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o Aligned Tools: Some specific business processes might
require very special tools or systems that in some enter-
prises could be difficult to consider, e.g. a special machine
in a craft business.

By continuously processing these events in real-time, com-
panies can perform an accurate and timely analysis of their
processes, making it possible to identify inefficiencies and
exploit optimization potential more quickly. In contrast to
traditional approaches, which are often based on periodic
evaluations, event-based processing provides dynamic and
immediate feedback, which is particularly beneficial in highly
volatile business environments [14, p. 25-41] [16].

TABLE I
A FRAGMENT OF SOME EXEMPLARY EVENT-LOG: EACH LINE
CORRESPONDS TO AN EVENT. THE DATA FIELDS COLORED IN RED ARE
MANDATORY, THOSE IN GREEN ARE USEFUL AND JUST OPTIONAL

= Cost[Energy Consumption _Water Consumtion__ Allgned Tools
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B. Process Mining for Optimization

Process Mining is a concept that refers to a set of methods
and technologies that come under the category of process
management [17]. Process Mining’s main aim is to examine
how processes actually occur, how far they differ from the
real model, what are the problems that occurred, what are the
best ways to improve the process, and then the start of actual
process improvement. This Process Mining technique can be
implemented on any process as long as there is proper data
stored by the target system.

Process Mining establishes a major connection between
business process modeling and analysis, and data mining. In
practice, these methods and techniques enable a very strict
monitoring of the authenticity and reliability of data from key
business processes. Both industry and academia have given
Process Mining a great deal of attention, which has resulted in
the development of various open-source and commercial tools
for Process Mining. However, to demonstrate the complete
picture, Process Mining techniques are gathered into four tasks
as illustrated in Fig. 2 [18]. Process Mining techniques are [17]
[19] [18]:

« Conformance checking

o Process re-engineering

o Operational Support

o Process discovery

Conformance checking identifies and diagnoses the discrep-
ancies and similarities between a process model and an event-
log. Conformance checking is also being performed to see
whether reality matches the model (as captured in the log)
and vice versa. The input process model can be normative



Process
reengineering

Process
discovery

Event Process Event Process
log model log = model
Laam & process model Improve of extend the process
based on event data model based on event data

Conformance Operational
checking support
Event - Process Event Process

pre—

Provide warnings, predictions,
and/or recommendations

log model log model
h Compare observed h
behavior and modeled

behavior

Fig. 2. The four basic tasks of Process Mining (based on [18]).

or demonstrative. Furthermore, the process model could have
been handmade or discovered through process discovery [18].

Process re-engineering uses event data to improve or extend
the model. Both process model and event data are utilized as
input, just as they are for conformance checking. However,
now the objective is to modify the process model rather
than to identify discrepancies. For example, sometimes the
model can be “repaired” to make it more realistic. Further
perspectives can be added to an existing process model is also
possible. For example, bottlenecks or resource utilization can
be demonstrated using replay techniques [14] [18]. Models are
updated as a result of process re-engineering. These models
can be applied to actual operations to improve them.

Operational support has direct impact on the process, in a
way that it issues recommendations, warnings, and predictions
directly [14]. As conformance checking happen on the fly, this
allows people to stay aware about what exactly the problem
is at that particular time and what are the things that deviate.
According to the data related to the event and model of the
currently running instance of the process, allowing one to
anticipate the time left in completion of the current flow,
the probability of reaching the legal deadline, as well as the
accompanying costs, the likelihood of a case being dismissed,
and so forth. It does not improve the process by modifying it
but by offering immediate data-driven assistance in the shape
of recommendations, warnings, and predictions.

Process discovery provides valuable insights into the actual
workflows of business processes and forms the basis for further
analyses such as conformance checking and performance
analysis [20].

C. Process Mining in Manufacturing

As already mentioned, process mining was originally and
mainly intended to analyze and optimize business processes.
However, the principal idea and approach works with almost
any procedural data, which includes also production data
along the manufacturing line. However, nowadays there are
no applied approaches known where process mining is used
to optimize manufacturing.

In the literature, there are just very few publications avail-
able that propagate the idea of using process mining in
manufacturing in a theoretic model. One of these approaches is
described by Massaro [21] to provide an innovative approach
to model production management in industry, adopting a new
“proof of concept” of advanced process mining automatizing
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Fig. 3. Simplified illustration of the pilot factory’s production line for the
manufacture of oscillating disks.

decisions, and optimizing machine settings and maintenance
interventions. The proposed work provides important parts
of engineering management related to the digitization of
production process matching with automated control systems
setting production parameters, thus enabling the self-adapting
of product quality supervision and production efficiency in
modern industrial systems. Even though this approach is using
process mining, it is very specific and adapted to automatic
adjustment of certain parameters but not in analyzing and
optimizing the manufacturing line in general. Another ap-
proach, developed by Yahya [22], is much stronger orienting
on the manufacturing line. The objective of this research is to
extend the existing process analysis framework by considering
the attribute perspective. The paper gives some fundamental
information on how to use it in manufacturing but is in many
ways only applicable in a theoretical manner and gives less
practical insights in analyzing or optimizing the production.

IV. PROCESS MINING IN SMART MANUFACTURING FOR
ADVANCED ANALYTICS

For our work, we collaborated with our partner of the PTW
team at the TU Darmstadt which allowed us to apply our sys-
tems on their pilot factory [23]. One of the biggest advantages
of the pilot factory is that we can apply our approach right
now and make continuous advancements in data collection and
mining without risking real business production. Important to
mention is that the pilot factory is strictly orienting on real
manufacturing industries, especially in regards of following a
strict production line, considering standards and state-of-the-
art production machines. This will later enable an application
of our solution in real manufacturing enterprises.

Furthermore, in our research project, we also have some
engaged small and medium-sized enterprises in the production
area, but they are as of today not ready to apply process mining
in their current stage of IoT integration. However, it is intended
to apply process mining there too.

The pilot factory [23] of the PTW produces among others
oscillating disks via the following stations (see Fig. 3):

o Milling: The plant offers two different milling machines
that differ in some minor features and aspects. The
milling is the most important step in creating the oscil-
lating disks.
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e Cleaning: To clean the disks after the milling, the station
enables cleaning via pressured air or water.

o Assembly: At the final station the oscillating discs will
be assembled, after which they are ready to use.

A. Methodology and Sensorization

As sketched in Fig. 4, we build upon an already sensorized
plant that makes use of Industry 4.0 or Smart Manufacturing
respectively. This means, that we use the installed Cumulocity
IoT platform at the pilot factory to manage the sensors and
collect any available data from internal sensors and additional
external sensors of the available plant machines via protocols
like OPC-UA or Modbus.

When manufacturers digitize their production systems, they
usually read the sensors or add sensors to the machines in the
plant to extract data on their status. In terms of Industry 4.0
or Smart Manufacturing, this data is generally only suitable
for Micro-Level Production Analytics. This means that it is
usually only possible to read out and analyze the current
statuses, such as which controllers are set and how, what
electricity volumes are flowing, how hot certain parts of the
system are, or what flow rate certain components have. To
carry out Macro-Level Production Analytics, aggregated data
is also required. For example, consumption or flow rate per
minute or hour. Only statements over longer periods can offer
information on the efficiency of the system or the current
production speed. However, it is important to mention here
that there are mostly statements about the production plant can
be made and it is basically hardly possible to make statements
about concretely produced products. In fact, Micro-Level and
Macro-Level Production Analytics are the current standard
when talking about Industry 4.0 or Smart Manufacturing.

In order to be able to make statements about specific
products produced or the production process itself, a process
perspective must also be added. This means that the products
to be produced must be specifically traced during their pro-
duction process and the exact required effort and consumed
resources at each processing station must be recorded and
saved in the event-log. This event-log can then be used later
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TABLE II
EXCERPT FROM OUR COLLECTED EVENT-LOG FROM THE PILOT FACTORY,
ON WHICH BASIS WE CARRY OUT PROCESS MINING:

Bauteil-ID/  Aktivitit/ Startzeitstempel/ Endzeitstempel / Energieverbrauch pro Bauteil [Ws] / Druckluftverbrauch pro Bauteil 1] /

Case ID [l Activity EIStartTime B End Time 3 Energy Consumption per Component [Wh] [ Compressed Air Consumption per Component liter] 3
230721-05G-002 Frasen? 210720230850 21072023 0301 440148 4249635301
230721-05G-002 Reinigen___ 21.07.20230902 _21.07.2023 09:06 61428 0
230721-05G-002 Montage 2107.2023 1518 21.07.2023 15:20 0 2058,168284
230721-05G-003 Frasent 210720230903 210720230313 418344 4356773582
230721-05G-003 Reinigen 2107.202309:14  21.07.2023 09:18 64896 0
230721-05G-003 Montage 210720231521 _ 21.07.2023 1523 [ 2014221637
230721-05G-004 Frasen2 210720230915 21.07.2023 09:24 351448 444,2320032
230721-05G-004 Reinigen  21.07.20230924 _21.07.2023 0928 39948 0
230721-056-004 Montage 210720231524 2107.2023 1525 0 1667531351
230721-05G-005 Frasent 210720230925 2107.2023 0934 405204 4515030365
230721-05G-005 Reinigen _ 21.07.20230934 _ 21.07.2023 0938 39888 0
230721-05G-005 Montage  21.07.2023 1526 21.07.2023 1528 0 1479537368,
230721-056-006 Frasen2 210720230935 210720230943 381104 393425094
230721-05G-006 Reinigen _ 21.07.2023 0943 _21.07.2023 0947 38724 0
230721-05G-006 Montage 24072023 1527 24072023 1529 0 2041077885
230721-066-014 Frasen2 21072003 110721072023 11:12 264576 265,0553814,
230721-06G-015 Frasent 21072003 11:14_ 210720231122 386888 305,1829587
230721-06G-015 Reinigen 21072023 1123 _21.07.2023 11:33 166920 0
230721-06G-015 Montage 24072023 153424072023 1535 ) 1586962488
230721-066-016 Frasen2 2107203 112321072023 1133 430716 4907425164
230721-06G-016 Reinigen ___ 21.07.2023 1133 _21.07.2023 11:38 108858 0

2407.2023 1538 0 6982635103
21.07.2003 11:42 359644 3307083344
21.07.2023 11:47 51894 0
24.07.2023 1540 0 2392651164
2107.2023 11:51 358368 3262111273
21.07.2023 11:55 48300 [
2407.2023 1541 0 644,5509136
2107.2023 1200 363284 369,1955249
2107.2023 1204 52038 0
2407.2023 1543 [ 7373271811
2107.2023 1209 334028 341,1969375
2107.2023 1213 33666,

2407.2023 1544 0

230721-066-016 Montage
230721-066-017 Frasent
230721-066-017 Reinigen
230721-066-017 Montage
230721-06G-018 Frasen2
230721-066-018 Reinigen
230721-066-018 Montage
230721-066-019 Frasent
230721-066-019 Reinigen
230721-066-019 Montage.
230721-066-020 Frasen2
230721-066-020 Reinigen
230721-066-020 Montage

2407.203 1537
21072023 11:34
21.07.203 11:43
2407.2023 1539
21.07.203 11:43
21.07.2023 1151
2407.2023 1540
21072023 11:52
21.07.2023 1200
24072023 1542
21.07.2023 1201
210720231210

0
240720231543 9546189558

with process mining to analyze both, the process and the

individual products.

B. IoT and Process Data Fusion

To take now the processing aspects into account, the docu-
mentation/logging of the processing steps of the piece goods
to be produced had to be incorporated. For this purpose,
each input material was assigned a unique bar-code identifier.
Whenever this material arrives at a station in the produc-
tion line, it is scanned, as well as when it is finished at
the station. The available IoT data is then used to record
energy consumption and compressed air consumption for the
specific workpiece in addition to the time data and the activity
currently being carried out on the workpiece.

Final event data logging looks as shown in Table II. The
format is a simple CSV file that can be extended by further
data dimensions such as handwork time, consumed water,
or consumed auxiliary materials, but maybe later, also data
toward occurred processing errors, additional repair costs, or
additional human resources and time.

C. Process Mining and Analytics Capabilities

A process mining algorithm, such as the Alpha algorithm,
e.g. [24], [25], is used to generate the process model. This
uses the event log to extract the individual activities and the
corresponding transitions between them, as well as all resource
consumption allocated to the activities.

The result can be imagined as a fuzzy cognitive map,
where the different transitions between activities have a certain
probability. In a further dimension, however, all resources
are also assigned to the respective activities. The process
model can therefore be used at any time to determine exactly
which activity of a specific event log led to this activity in
the process model. This complex interlinking of information
enables a wide range of analyses to be carried out (see Fig. 5).
Essentially, the analyses can be broken down into three levels:
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e Process Level: Here, the evaluation is always based on
the entire process. This could be, for example, evaluations
of the shortest or longest process processing or which
process has consumed the most electricity.

o Activity Level: In contrast to the process level, there
is only interest in the processing at a station, such as
milling. This could involve variances in production, such
as power consumption, or how often errors or abortions
occur. If there are several stations and therefore activities,
a comparison of efficiency or similar can also be relevant.

o Transition Level: Transitions are often rarely considered,
but they are not insignificant. In other words, what hap-
pens between various activities or work-stations. Regular
waiting times could be analyzed here. With reference to
the logs, it should be emphasized here that the transitions
are not recorded directly and therefore have no resource
consumption alignment or something similar. Transitions
are therefore recorded indirectly, via the interruption
between two activities or work-stations.

Each of the three perspectives can essentially be further
broken down into these two considerations:

o Summarizing Evaluation: This involves total statements
that apply to the majority of all processes, activities or
transitions. These can be statements on min, max or aver-
age consumptions. Classically, this information functions
as performance metric as usually used in dashboards (e.g.
[26]).

o Cluster Evaluation: Before an evaluation can take place
here, the specific clusters must first be selected for
cluster evaluations. These can be processes, activities
or transitions that take a particularly long time and are
therefore above a certain threshold. The focus here is on
the evaluation of a subset of existing processes, activities
or transitions.

D. Visual Process Analytics in Smart Manufacturing
For Process Mining, we use the market software ARIS
Process Mining? [27], which we configured to consume the

2Website of ARIS Process Mining: https://aris.com/process-mining/ (last
accessed: 13/04/2025)
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Fig. 6. Automatically generated production process through process mining.
The numbers indicate how often a workpiece was processed at a particular
station or which process routes were taken.

Total duration of activities (in hours) Total duration of activities (in hours)

/- Frasen!
Reinigen

Montage
- Frasen2 2

@ Dauer der Aktivitat: 1,07 (41,9%)

Montage

en2 @ Montage @ Relnigen 2 @ Monage @ Reinigen

Fig. 7. Overview about the total duration of any activities in hours.

CSV file as defined above. Basically, any kind of process
mining solution would be suitable, but ARIS Process Mining
enables direct analysis and show the results in diagrams, which
simplifies the follow-up work.

As a result, the system generates a process model (see Fig.
6) just based on the event-logs in the CSV file. Furthermore, it
shows all possible transitions through the process activities but
highlights those that are most often being used. An analysis
of the process paths could help to identify possible problems
in the manufacturing process.

The higher analytical value is the detailed analysis which
can be done by analyzing the additional data dimensions.
In contrast to analyzing IoT data, these process data allow
a huge analysis variety in perspective of time and resource
consumption.

An example is the analysis of consumed time at the
different stations which is essential if a large production is
planned, and each station should take approximately the same
time. As could be seen in Fig. 7 the different stations need
significantly different times. In particular, the assembling
takes most of the time.

In Fig. 8 we could check the proportion of consumed
resources. What we could see is that the total consumed
resources in contrast to the median consumed resources per
case/piece seems to be equivalent.



Total ressource consumtion

Median ressource consumption (per case)

Fig. 8. Comparison of the total resource consumption to the median resource
consumption of a case/product.
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Fig. 9. Comparative view about the median resource consumption for the
individual activities/stations on the plant.

Another interesting insight into the production is shown in
Fig. 9. In particular, the differences between the two different
milling machines are obvious. While milling machine #1
consumes significantly less air pressure in contrast to milling
machine #2, it consumes slightly more energy than milling
machine #2.

The last insight in Fig. 10 shows the spread between min
and max resource consumptions for individual activities. The
huge span indicates that the production quality seems to be
a problem since some piece goods seems not to be finished
the production line. If this indicated anomaly is critical would
require further investigation.
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Fig. 10. Comparative view on min and max consumed resources for the
individual activities/stations to identify potential failure production (rejected
goods).
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V. DISCUSSION

We are currently using the approach with our partners in
the PTW learning factory at TU Darmstadt, but it is designed
in such a way that the approach can also be implemented
comparatively easily with our application partners from in-
dustry. In particular, the fact that the process model does not
have to be defined manually first, but is generated dynami-
cally directly from the logs via process mining, significantly
simplifies the application. There is also no need for extensive
digitalization of the production facilities beforehand; simple
resource measurement instruments are sufficient. The biggest
challenge is the traceability of the workpieces to be produced,
but the approach can also be applied to tranches or orders.
This means that older production plants, in particular, only
need to be expanded to include scanning the workpieces at the
start and end of processing at each workstation/machine and
recording the resources or wear and tear consumed during this
time. This makes the application at small and medium-sized
producing companies most useful. Compared to digitization
for smart manufacturing, this is a considerable simplification
that nevertheless leads to very accurate results. In the project,
we were also able to easily implement an approach to generate
accurate CO2 emissions for a digital product passport (DPP)
[28], as it should become standard in the European Union for
any sold product.

As the approach does not follow the classic approach
of pure digitization of the production line, it is relatively
difficult to communicate this as an alternative but often more
expedient approach. In the project, however, we had positive
experiences overall, especially because the accuracy of the
recorded emissions was so precise.

VI. CONCLUSION

In this paper, a novel approach was presented on how smart
manufacturing using IoT can be improved by supplementing
it with process mining in order to measure production and
consumption much more effectively based on the products
produced. This is because process mining can be used to
allocate consumption and activities not just at the machine
level, but to products along the entire production chain. Special
expenses, for example, due to reworking processes, are also
recorded and can be analyzed in detail. This means that not
only can the production process be comprehensively analyzed
and optimized, but also all consumptions for a product can
be viewed individually, in clusters, or as a whole. This allows
completely new insights into where which expenses actually
arise or can even arise in rare cases that finally affect the entire
production process.
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