Posts

Thesis Presentation: Named-Entity Recognition on Publications and Raw-Text for Meticulous Insight at Visual Trend Analytics

Where: TU Darmstadt / GRIS, Fraunhoferstr. 5 (Darmstadt), Room tba

!!!!! Due to the Corona crisis and the accompanying restrictions at the TU Darmstadt, the exam will be non-public! !!!!!

Who: Ubaid Rana (Author), Prof. Dr. Arjan Kuijper (Supervisor), Dipl.-Inf. Dirk Burkhardt (Advisor/Co-Supervisor)
What: Master Thesis – “Named-Entity Recognition on Publications and Raw-Text for Meticulous Insight at Visual Trend Analytics”

Abstract:

In the modern data-driven era, a massive amount of research documents are available from publicly accessible digital libraries in the form of academic papers, journals and publications. This plethora of data does not lead to new insights or knowledge. Therefore, suitable analysis techniques and graphical tools are needed to derive knowledge in order to get insight of this big data. To address this issue, researchers have developed visual analytical systems along with machine learning methods, e.g text mining with interactive data visualization, which leads to gain new insights of current and upcoming technology trends. These trends are significant for researchers, business analysts, and decision-makers for innovation, technology management and to make strategic decisions.
Nearly every existing search portal uses the traditional meta-information e.g only about the author and title to find the documents that match a search request and overlook the opportunity of extracting content-related information. It limits the possibility of discovering most relevant publications, moreover it lacks the knowledge required for trend analysis. To collect this very concrete information, named entity recognition must be used to be able to better identify the results and trends. The state-of-the-art systems use static approach for named entity recognition which means that upcoming technologies remain undetected. Modern techniques like distant supervision methods leverage big existing community-maintained data sources, such as Wikipedia, to extract entities dynamically. Nonetheless, these methods are still unstable and have never been tried on complex scenarios such as trend analysis before.
The aim of this thesis is to enable entity recognition on both static tables and dynamic community updated data sources like Wikipedia & DBpedia for trend analysis. To accomplish this goal, a model is suggested which enabled entity extraction on DBpedia and translated the extracted entities into interactive visualizations. The analysts can use these visualizations to gain trend insights, evaluate research trends or to analyze prevailing market moods and industry trends.

The post Thesis Presentation: Named-Entity Recognition on Publications and Raw-Text for Meticulous Insight at Visual Trend Analytics appeared first on Human-Computer Interaction & Visual Analyitics Reasearch Group (vis) at Darmstadt University of Applied Sciences (h_da).

Paper accepted at 14th International Symposium on Visual Computing (ISVC 2019)

I’m proud to announce that our paper titled “A Visual Analytics Approach for Analyzing Technological Trends in Technology and Innovation Management” is accepted at the high-class visual computing conference ISVC 2019 in Lake Tahoe, NV, USA. The purpose of the International Symposium on Visual Computing (ISVC) is to provide a common forum for researchers, scientists, engineers and practitioners throughout the world to present their latest research findings, ideas, developments and applications in visual computing. ISVC seeks papers describing contributions to the state of the art and state of the practice in the four central areas of visual computing: computer vision, computer graphics, virtual reality, and visualization. The paper reflects some new on-going advancements of our innovative Trend Analytics solution Scitics.

Paper: A Visual Analytics Approach for Analyzing Technological Trends in Technology and Innovation Management

Abstract:
Visual Analytics provides with a combination of automated techniques and interactive visualizations huge analytics possibilities in technology and innovation management. Thereby not only the use of machine learning data mining methods plays an important role. Due to the high interaction capabilities, it provides a more user-centered approach, where users are able to manipulate the entire analysis process and get the most valuable information. Existing Visual Analytics systems for Trend Analytics and technology and innovation management do not really make use of this unique feature and do not include the human in the analysis process. Outcomes from research on information search, information visualization and technology management can lead to more sophisticated Visual Analytics systems that involved the human in the entire analysis process. We propose in this paper a new interaction approach for Visual Analytics in technology and innovation management with a special focus on technological trend analytics.

Link to paper/fulltext: https://dx.doi.org/10.1007/978-3-030-33723-0_23
Link to poster: https://dx.doi.org/10.5281/zenodo.3473065

 

The post Paper accepted at 14th International Symposium on Visual Computing (ISVC 2019) appeared first on h_da | vis – Reasearch Group Human-Computer Interaction and Visual Analyitics – Darmstadt University of Applied Sciences.